<th id="6yc0e"></th>
  • <samp id="6yc0e"><pre id="6yc0e"></pre></samp>
  • <ul id="6yc0e"><pre id="6yc0e"></pre></ul><ul id="6yc0e"><pre id="6yc0e"></pre></ul>
    <samp id="6yc0e"><pre id="6yc0e"></pre></samp>
  • <th id="6yc0e"></th>
    <samp id="6yc0e"></samp>
  • <kbd id="6yc0e"><pre id="6yc0e"></pre></kbd>
    <samp id="6yc0e"></samp>
    <ul id="6yc0e"><tbody id="6yc0e"></tbody></ul>
  • <samp id="6yc0e"></samp>
  • 在线免费成人亚洲av,无码毛片一区二区本码视频,亚洲日韩一区精品射精,国产99视频精品免费视频36

    高一數(shù)學(xué)教學(xué)設(shè)計

    時間:2023-03-08 23:33:32 教學(xué)設(shè)計 我要投稿

    高一數(shù)學(xué)教學(xué)設(shè)計

      作為一名教學(xué)工作者,通常需要用到教學(xué)設(shè)計來輔助教學(xué),借助教學(xué)設(shè)計可以提高教學(xué)效率和教學(xué)質(zhì)量。我們應(yīng)該怎么寫教學(xué)設(shè)計呢?下面是小編幫大家整理的高一數(shù)學(xué)教學(xué)設(shè)計,歡迎閱讀與收藏。

    高一數(shù)學(xué)教學(xué)設(shè)計

    高一數(shù)學(xué)教學(xué)設(shè)計1

      一、指導(dǎo)思想

      準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。

      二、高一上冊數(shù)學(xué)教學(xué)教材特點(diǎn):

      我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有如下特點(diǎn):

      1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.

      2.問題性:以恰時恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.

      3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.

      4.時代性與應(yīng)用性:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識.

      三、高一上冊數(shù)學(xué)教學(xué)教法分析:

      1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的.

      2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的'學(xué)習(xí)方式.

      3.在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.

      四、學(xué)情分析

      高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.

      五、高一上冊數(shù)學(xué)教學(xué)教學(xué)措施:

      1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

      2、注意從實例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.

      3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實際問題的能力,提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育.

      4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力.

      5、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng).

    高一數(shù)學(xué)教學(xué)設(shè)計2

      課題:

      《直線與平面垂直的性質(zhì)》

      課時:

      11

      學(xué)習(xí)目標(biāo):

      探究線面垂直的性質(zhì)定理,培養(yǎng)學(xué)生的空間想象能力;

      掌握性質(zhì)定理的應(yīng)用,提高邏輯推理能力。

      重點(diǎn) 難點(diǎn):

      線面垂直的性質(zhì)定理及其應(yīng)用

      學(xué)習(xí)過程:

      復(fù)習(xí)鞏固:直線與平面垂直的判定定理是什么?

      學(xué)習(xí)新知:

      1、注意觀察右面兩個圖,在長方體ABCD-A’B’C’D”中,棱AA’、BB’、CC’、DD’都與平面ABCD垂直,它們之間具有什么什么關(guān)系?

      2、右圖中,已知直線a,b和平面α,如果a⊥α,b⊥α那么直線a,b是否平行呢?

      直線與平面垂直的性質(zhì)定理:

      一般地,我們得到直線與平面垂直的'性質(zhì)定理

      定理:(文字語言) 垂直于同一平面的兩條直線平行。

      (符號語言)

      a⊥α, b⊥α? a∥b

      O (圖形語言)如圖: 判定兩條直線平行的方法很多,直線與平面垂直的定理告訴我們,可以由兩條直線與一個平面垂直判定兩條直線平行。直線與平面垂直的性質(zhì)定理揭示了“平行”與“垂直”之間的內(nèi)在聯(lián)系。

      3、直線與平面垂直的性質(zhì)的應(yīng)用

      例4、設(shè)直線a,b分別在正方體ABCD-A’B’C’D”中兩個不同的平面內(nèi),欲使a∥b,則a,b應(yīng)滿足什么條件?

      解:a,b滿足下面條件中的任何一個,都能使a∥b,

      (1)a,b同垂直于正方體一個面;

      (2)a,b分別在正方體兩個相對的面內(nèi)且共面;

      (3)a,b平行于同一條棱;

      (4)如圖,E,F(xiàn),G,H分別為B’C’,CC’,AA’,AD的中點(diǎn),EF所在的直線為a,GH所在直線為b,等等。

      思考:你還能找出其他一些條件嗎?

      練習(xí)p42 1, 2

      作業(yè):P43

    高一數(shù)學(xué)教學(xué)設(shè)計3

      (一)教學(xué)目標(biāo)

      1.知識與技能

      (1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.

      (2)能使用Venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會直觀圖對理解抽象概念的作用。

      (3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進(jìn)行集合的并集與交集運(yùn)算。

      2.過程與方法

      通過對實例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.

      3.情感、態(tài)度與價值觀

      通過集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識和數(shù)學(xué)思想認(rèn)識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價值.

      (二)教學(xué)重點(diǎn)與難點(diǎn)

      重點(diǎn):交集、并集運(yùn)算的含義,識記與運(yùn)用.

      難點(diǎn):弄清交集、并集的含義,認(rèn)識符號之間的區(qū)別與聯(lián)系

      (三)教學(xué)方法

      在思考中感知知識,在合作交流中形成知識,在獨(dú)立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.

      (四)教學(xué)過程

      教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖

      提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運(yùn)算,探究集合能否進(jìn)行類似“加法”運(yùn)算.

      (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

      (2)A = {x | x是有理數(shù)},

      B = {x | x是無理數(shù)},

      C = {x | x是實數(shù)}.

      師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.

      生:集合A與B的元素合并構(gòu)成C.

      師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,

      導(dǎo)入新知

      形成

      概念

      思考:并集運(yùn)算.

      集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

      定義:由所有屬于集合A或集合B的元素組成的.集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

      師:請同學(xué)們將上述兩組實例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.

      學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

      應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.

      例2 設(shè)集合A = {x | –1

      例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

      例2解:A∪B = {x |–1

      師:求并集時,兩集合的相同元素如何在并集中表示.

      生:遵循集合元素的互異性.

      師:涉及不等式型集合問題.

      注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.

      生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學(xué)生嘗試求解,老師適時適當(dāng)指導(dǎo),評析.

      固化概念

      提升能力

      探究性質(zhì) ①A∪A = A, ②A∪ = A,

      ③A∪B = B∪A,

      ④ ∪B, ∪B.

      老師要求學(xué)生對性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

      形成概念 自學(xué)提要:

      ①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運(yùn)算?

      ②交集運(yùn)算具有的運(yùn)算性質(zhì)呢?

      交集的定義.

      由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

      即A∩B = {x | x∈A且x∈B}

      Venn圖表示

      老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).

      生:①A∩A = A;

      ②A∩ = ;

      ③A∩B = B∩A;

      ④A∩ ,A∩ .

      師:適當(dāng)闡述上述性質(zhì).

      自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

      應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},

      B = {3,5,8,12},C = {8}.

      (2)新華中學(xué)開運(yùn)動會,設(shè)

      A = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},

      B = {x | x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求A∩B.

      例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為L1,直線l2上點(diǎn)的集合為L2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺板演,老師點(diǎn)評、總結(jié).

      例1 解:(1)∵A∩B = {8},

      ∴A∩B = C.

      (2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.

      例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.

      (1)直線l1,l2相交于一點(diǎn)P可表示為 L1∩L2 = {點(diǎn)P};

      (2)直線l1,l2平行可表示為

      L1∩L2 = ;

      (3)直線l1,l2重合可表示為

      L1∩L2 = L1 = L2. 提升學(xué)生的動手實踐能力.

      歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}

      交集:A∩B = {x | x∈A且x∈B}

      性質(zhì):①A∩A = A,A∪A = A,

      ②A∩ = ,A∪ = A,

      ③A∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)

      老師點(diǎn)評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡(luò)

      課后作業(yè) 1.1第三課時 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識,提升能力,反思升華

      備選例題

      例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

      【解析】法一:∵A∩B = {–2},∴–2∈B,

      ∴a – 1 = –2或a + 1 = –2,

      解得a = –1或a = –3,

      當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

      當(dāng)a = –3時,A = {–1,10,6},A不合要求,a = –3舍去

      ∴a = –1.

      法二:∵A∩B = {–2},∴–2∈A,

      又∵a2 + 1≥1,∴a2 – 3 = –2,

      解得a =±1,

      當(dāng)a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

      當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

      例2 集合A = {x | –1

      (1)若A∩B = ,求a的取值范圍;

      (2)若A∪B = {x | x<1},求a的取值范圍.

      【解析】(1)如下圖所示:A = {x | –1

      ∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).

      ∴a≤–1.

      (2)如右圖所示:A = {x | –1

      ∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.

      ∴–1

      例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?

      【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

      由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

      當(dāng)a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.

      當(dāng)a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.

      例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

      【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

      當(dāng)x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

      當(dāng)x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

      當(dāng)x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

      綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

    高一數(shù)學(xué)教學(xué)設(shè)計4

      學(xué)習(xí)目標(biāo)

      1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系;

      2.掌握零點(diǎn)存在的判定定理.

      學(xué)習(xí)過程

      一、課前準(zhǔn)備

      (預(yù)習(xí)教材P86~P88,找出疑惑之處)

      復(fù)習(xí)1:一元二次方程+bx+c=0(a0)的解法.

      判別式=.

      當(dāng)0,方程有兩根,為;

      當(dāng)0,方程有一根,為;

      當(dāng)0,方程無實根.

      復(fù)習(xí)2:方程+bx+c=0(a0)的根與二次函數(shù)y=ax+bx+c(a0)的圖象之間有什么關(guān)系?

      判別式一元二次方程二次函數(shù)圖象

      二、新課導(dǎo)學(xué)

      ※學(xué)習(xí)探究

      探究任務(wù)一:函數(shù)零點(diǎn)與方程的根的關(guān)系

      問題:

      ①方程的解為,函數(shù)的圖象與x軸有個交點(diǎn),坐標(biāo)為.

      ②方程的解為,函數(shù)的圖象與x軸有個交點(diǎn),坐標(biāo)為.

      ③方程的解為,函數(shù)的圖象與x軸有個交點(diǎn),坐標(biāo)為.

      根據(jù)以上結(jié)論,可以得到:

      一元二次方程的根就是相應(yīng)二次函數(shù)的`圖象與x軸交點(diǎn)的.

      你能將結(jié)論進(jìn)一步推廣到嗎?

      新知:對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點(diǎn)(zeropoint).

      反思:

      函數(shù)的零點(diǎn)、方程的實數(shù)根、函數(shù)的圖象與x軸交點(diǎn)的橫坐標(biāo),三者有什么關(guān)系?

      試試:

      (1)函數(shù)的零點(diǎn)為;(2)函數(shù)的零點(diǎn)為.

      小結(jié):方程有實數(shù)根函數(shù)的圖象與x軸有交點(diǎn)函數(shù)有零點(diǎn).

      探究任務(wù)二:零點(diǎn)存在性定理

      問題:

      ①作出的圖象,求的值,觀察和的符號

      ②觀察下面函數(shù)的圖象,

      在區(qū)間上零點(diǎn);0;

      在區(qū)間上零點(diǎn);0;

      在區(qū)間上零點(diǎn);0.

      新知:如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,并且有<0,那么,函數(shù)在區(qū)間內(nèi)有零點(diǎn),即存在,使得,這個c也就是方程的根.

      討論:零點(diǎn)個數(shù)一定是一個嗎?逆定理成立嗎?試結(jié)合圖形來分析.

      ※典型例題

      例1求函數(shù)的零點(diǎn)的個數(shù).

      變式:求函數(shù)的零點(diǎn)所在區(qū)間.

      小結(jié):函數(shù)零點(diǎn)的求法.

      ①代數(shù)法:求方程的實數(shù)根;

      ②幾何法:對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

      ※動手試試

      練1.求下列函數(shù)的零點(diǎn):

      (1);

      (2).

      練2.求函數(shù)的零點(diǎn)所在的大致區(qū)間.

      三、總結(jié)提升

      ※學(xué)習(xí)小結(jié)

      ①零點(diǎn)概念;②零點(diǎn)、與x軸交點(diǎn)、方程的根的關(guān)系;③零點(diǎn)存在性定理

      ※知識拓展

      圖象連續(xù)的函數(shù)的零點(diǎn)的性質(zhì):

      (1)函數(shù)的圖象是連續(xù)的,當(dāng)它通過零點(diǎn)時(非偶次零點(diǎn)),函數(shù)值變號.

      推論:函數(shù)在區(qū)間上的圖象是連續(xù)的,且,那么函數(shù)在區(qū)間上至少有一個零點(diǎn).

      (2)相鄰兩個零點(diǎn)之間的函數(shù)值保持同號.

      學(xué)習(xí)評價

      ※自我評價你完成本節(jié)導(dǎo)學(xué)案的情況為().

      A.很好B.較好C.一般D.較差

      ※當(dāng)堂檢測(時量:5分鐘滿分:10分)計分:

      1.函數(shù)的零點(diǎn)個數(shù)為().

      A.1B.2C.3D.4

      2.若函數(shù)在上連續(xù),且有.則函數(shù)在上().

      A.一定沒有零點(diǎn)B.至少有一個零點(diǎn)

      C.只有一個零點(diǎn)D.零點(diǎn)情況不確定

      3.函數(shù)的零點(diǎn)所在區(qū)間為().

      A.B.C.D.

      4.函數(shù)的零點(diǎn)為.

      5.若函數(shù)為定義域是R的奇函數(shù),且在上有一個零點(diǎn).則的零點(diǎn)個數(shù)為.

      課后作業(yè)

      1.求函數(shù)的零點(diǎn)所在的大致區(qū)間,并畫出它的大致圖象.

      2.已知函數(shù).

      (1)為何值時,函數(shù)的圖象與軸有兩個零點(diǎn);

      (2)若函數(shù)至少有一個零點(diǎn)在原點(diǎn)右側(cè),求值.

    高一數(shù)學(xué)教學(xué)設(shè)計5

      一、教學(xué)目標(biāo)

      2、 過程與方法目標(biāo):通過讓學(xué)生探 究點(diǎn)、線、面之間的相互關(guān)系,掌握文字語言、符號語言、圖示語 言之間的相互轉(zhuǎn)化。

      3、 情感、態(tài)度與價值目標(biāo):通過用集合論 的觀點(diǎn)和運(yùn)動的觀點(diǎn)討論點(diǎn)、線、面、體之間的相互關(guān)系培養(yǎng)學(xué)生會從多角度,多方面觀察和分析問題,體會將理論知識和現(xiàn)實生活建立聯(lián)系的快樂,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      二、教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):點(diǎn)、線、面之間的相互關(guān)系,以及文字語言、符號語言、圖示語言之間的相互轉(zhuǎn)化。

      難點(diǎn):從集合的角度理解點(diǎn)、線、面之間的相互關(guān)系。

      三、教學(xué)方法和教學(xué)手段

      在上課前將問題用學(xué)案的形式發(fā)給各組學(xué)生,讓學(xué)生先在課下研究探討,在課上以小組為單位就學(xué)案中的問題展開討論并發(fā)表自己組的研究結(jié)果,并引導(dǎo)同學(xué)展開爭論,同時利用課件給 同學(xué)一個直觀的展示,然后得出結(jié)論。下附學(xué)生的學(xué)案

      四、教學(xué)過程

      教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖

      課題引入 讓同學(xué)們觀察幾個幾何體,從感性上對幾何體有個初步的認(rèn)識,并總結(jié)出空間立體幾何研究的幾個基本元素。 學(xué)生觀察、討論、總結(jié),教師引導(dǎo)。 提高學(xué)生的`學(xué)習(xí)興趣

      新課講解

      基礎(chǔ)知識

      能力拓展

      探索研究 一、構(gòu)成幾何體的基本元素。

      點(diǎn)、線、面

      二、從集合的角度解釋點(diǎn)、線、面、體之間的相互關(guān)系。

      點(diǎn)是元素,直線是點(diǎn)的集合,平面是點(diǎn)的集合,直線是平面的子集。

      三、從運(yùn)動學(xué)的角度解釋點(diǎn)、線、面、體之間的相互關(guān)系。

      1、 點(diǎn)運(yùn)動成直線和曲線。

      2、 直線有兩種運(yùn)動方式:平行移動和繞點(diǎn)轉(zhuǎn)動。

      3、 平行移動形成平面和曲面。

      4、 繞點(diǎn)轉(zhuǎn)動形成平面和曲面。

      5、 注意直線的兩種運(yùn)動方式形成的曲面的區(qū)別。

      6、 面運(yùn)動成體。

      四、點(diǎn)、線、面、之間的相互位置關(guān)系。

      1、 點(diǎn)和線的位置關(guān)系。

      點(diǎn)A

      2、 點(diǎn)和面的位置關(guān)系。

      3、 直線和直線的位置關(guān)系。

      4 、 直線和平面的位置關(guān)系。

      5、 平面和平面的位置關(guān)系。 通過對幾何體的觀察、討論由學(xué)生自己總結(jié)。

      引領(lǐng)學(xué)生回憶元素、集合的相互關(guān)系,討論、歸納點(diǎn)、線、面之間的相互關(guān)系。

      通過課件演示及學(xué)生的討論,得出從 運(yùn)動學(xué)的角度發(fā)現(xiàn)點(diǎn)、線、面之間的相互關(guān)系。

      引導(dǎo)學(xué)生由生活中的實際例子總結(jié)出點(diǎn)、線、面之間的相互位置關(guān)系,讓學(xué)生有個感性認(rèn)識。 培養(yǎng)學(xué)生的觀察能力。

      培養(yǎng)學(xué)生將所學(xué)知識建立相互聯(lián)系的能力。

      讓學(xué)生在觀察中發(fā)現(xiàn)點(diǎn)、線、面之間的相互運(yùn)動規(guī)律,為以后學(xué)習(xí)幾何體奠定基礎(chǔ)。

      培養(yǎng)學(xué)生將學(xué)習(xí)聯(lián)系實際的習(xí)慣,鍛煉學(xué)生由感性認(rèn)識上升為理性知識的能力。

      課堂小結(jié) 1、 學(xué)習(xí)了構(gòu)成幾何體的基本元素。

      2、 掌握了點(diǎn)、線、面之間的相互關(guān)系。

      3、 了解了點(diǎn)、線、面之間的相互的位置關(guān)系。 由學(xué)生總結(jié)歸納。 培養(yǎng)學(xué)生總結(jié)、歸納、反思的學(xué)習(xí)習(xí)慣。

      課后作業(yè) 試著畫出點(diǎn)、線、面之間的幾種位置關(guān)系。 學(xué)生課后研究完成。 檢驗學(xué)生上課的聽課效果及觀察能力。

      附:1.1.1構(gòu)成空間幾何體的基本元素學(xué)案

      (一)、基礎(chǔ)知識

      1、 幾何體:________________________________________________________________

      2、 長方體:________________________________ ___________________________ _____

      3、 長方體的面:____________________________________________________________

      4、 長方體的棱: ____________________________________________________________

      5、 長方體的頂點(diǎn):__________________________________________________________

      6、 構(gòu)成幾何體的基本元素:__________________________________________________

      7、 你能說出構(gòu)成幾何體的 幾個基本元素之間的關(guān)系嗎?

      (二)、能力拓展

      1、 如果點(diǎn)做連續(xù)運(yùn)動,運(yùn)動出來的軌跡可能是______________________ 因此點(diǎn)是立體幾何中的最基本的元素,如果點(diǎn)運(yùn)動的方向不變,則運(yùn)動的軌跡是_____________ 如果點(diǎn)運(yùn)動的軌跡改變,則運(yùn)動的軌跡是________ ____ 試舉幾個日常生活中點(diǎn)運(yùn)動成線的例子___ ________________________________

      2、 在空間中你認(rèn)為直線有幾種運(yùn)動方式_______________________________________分別形成_______________________________________________________你能舉幾個日常生活中的例子嗎?

      3、 你知道直線和線段的區(qū)別嗎?_______________________________________如果是線段做上述運(yùn)動,結(jié)果如何?_______________________________________.現(xiàn)在你能總結(jié)出平面和面的區(qū)別嗎?______________________________________________

      (三)、探索與研究

      1、 構(gòu)成幾何體的基本元素是_________,__________,____________.

      2、 點(diǎn)和線能有幾種位置關(guān)系_________________________你能畫圖說明嗎?

      3、 點(diǎn)和平面能有幾種位置關(guān)系_______________________你能畫圖說明嗎?

      4、 直線和直線能有幾種位置關(guān)系________________________你能畫圖說明嗎?

    高一數(shù)學(xué)教學(xué)設(shè)計6

      本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時.?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣.同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.

      【教學(xué)目標(biāo)】

      1. 知識與技能

      (1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:

      (2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:

      (3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。

      2.過程與方法

      在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

      3.情感、態(tài)度與價值觀

      通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

      【教學(xué)重點(diǎn)】

      ①等差數(shù)列的概念;②等差數(shù)列的通項公式

      【教學(xué)難點(diǎn)】

      ①理解等差數(shù)列“等差”的特點(diǎn)及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.

      【學(xué)情分析】

      我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

      【設(shè)計思路】

      1.教法

      ①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

      ②分組討論法:有利于學(xué)生進(jìn)行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

      ③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

      2.學(xué)法

      引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.

      【教學(xué)過程】

      一:創(chuàng)設(shè)情境,引入新課

      1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

      2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:)組成一個什么數(shù)列?

      3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?

      教師:以上三個問題中的數(shù)蘊(yùn)涵著三列數(shù).

      學(xué)生:

      1:0,5,10,15,20,25,….

      2:18,15.5,13,10.5,8,5.5.

      3:10072,10144,10216,10288,10360.

      (設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的`數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.

      二:觀察歸納,形成定義

      ①0,5,10,15,20,25,….

      ②18,15.5,13,10.5,8,5.5.

      ③10072,10144,10216,10288,10360.

      思考1上述數(shù)列有什么共同特點(diǎn)?

      思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

      思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?

      教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

      學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

      教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.

      (設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達(dá).)

      三:舉一反三,鞏固定義

      1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

      (1)1,1,1,1,1;

      (2)1,0,1,0,1;

      (3)2,1,0,-1,-2;

      (4)4,7,10,13,16.

      教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.

      注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

      (設(shè)計意圖:強(qiáng)化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).

      2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

      (設(shè)計意圖:強(qiáng)化等差數(shù)列的證明定義法)

      四:利用定義,導(dǎo)出通項

      1.已知等差數(shù)列:8,5,2,…,求第200項?

      2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

      教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

      (設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點(diǎn)評,并及時肯定、贊揚(yáng)學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

      五:應(yīng)用通項,解決問題

      1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?

      2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

      3求等差數(shù)列 3,7,11,…的第4項和第10項

      教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

      學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項和公差就可以求出其通項公式

      (設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)

      六:反饋練習(xí):教材13頁練習(xí)1

      七:歸納總結(jié):

      1.一個定義:

      等差數(shù)列的定義及定義表達(dá)式

      2.一個公式:

      等差數(shù)列的通項公式

      3.二個應(yīng)用:

      定義和通項公式的應(yīng)用

      教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補(bǔ)充

      (設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運(yùn)用基本概念.)

      【設(shè)計反思】

      本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.

    高一數(shù)學(xué)教學(xué)設(shè)計7

      教學(xué)目標(biāo)

      1.知識目標(biāo):正確理解現(xiàn)階段函數(shù)的概念,理解定義域的概念

      2.能力目標(biāo):使學(xué)生具有使用函數(shù)模型研究生活中簡單的事物變化規(guī)律的能力。

      3.情感目標(biāo):滲透數(shù)學(xué)來源于生活,運(yùn)用于生活的思想。

      重點(diǎn)讓學(xué)生理解現(xiàn)階段函數(shù)的概念,定義域的概念。

      難點(diǎn)用函數(shù)模型去研究生活中簡單的事物變化規(guī)律時,如何確定定義域。

      學(xué)情

      分析授課班級為高一年級的學(xué)生,有朝氣,有活力,愛實踐,愛生活。本課之前,學(xué)生已經(jīng)學(xué)習(xí)了初中函數(shù)概念,為本課的學(xué)習(xí)打下基礎(chǔ)。

      教法與學(xué)法教法:微課視頻中包含情境教學(xué)法、多媒體輔助教學(xué)法的使用。

      信息化教學(xué)資源

      1.動畫設(shè)計《世界在不斷的變化》

      2.專業(yè)錄頻軟件;

      3.視頻后期處理軟件;

      4.QQ;

      5.其它圖片、背景音樂。

      課前準(zhǔn)備

      復(fù)習(xí)初中數(shù)學(xué)函數(shù)概念

      教學(xué)過程

      環(huán)節(jié)設(shè)計:教師活動、學(xué)生活動、設(shè)計意圖

      環(huán)節(jié)一創(chuàng)設(shè)情境

      興趣導(dǎo)入首先讓學(xué)生觀看視頻《世界在不斷的變化》

      老師解說:這個世界在不斷的變化,有一句很有哲理的話“這個世界唯一沒有變化的就是這個世界一直在改變”。聰明的人類為了在這個不斷變化的世界中生存,想出了很多記錄世界變化規(guī)律的辦法。今天我們就來學(xué)習(xí)一個好辦法,它就是數(shù)學(xué)函數(shù),函數(shù)是研究事物變化規(guī)律的數(shù)學(xué)模型之一。

      1看視頻。

      2聽老師解說,函數(shù)是研究世界變化規(guī)律的數(shù)學(xué)模型之一。

      3了解函數(shù)的作用,對函數(shù)產(chǎn)生興趣。

      通過讓學(xué)生觀看視頻,并對學(xué)生講解,讓學(xué)生了解函數(shù)是用來研究事物變化規(guī)律的數(shù)學(xué)模型之一,這樣學(xué)生能更深刻的理解函數(shù)的功能,即激發(fā)了學(xué)生學(xué)習(xí)熱情,又回顧初中學(xué)習(xí)的數(shù)學(xué)函數(shù)的定義。

      在某一個變化過程中有兩個變更x和y,在某一法則的作用下,如果對于x的每一個值,y都有唯一的值與其相對應(yīng),就稱y是x的.函數(shù),這時x是自變量,y是因變量.

      用一個生活實例加深對知識的理解。

      實例:到學(xué)校商店購買某種果汁飲料,每瓶售價2.5元,那么購買瓶數(shù)x,與應(yīng)付款y之間存在一種對應(yīng)關(guān)系y=2.5x.瓶數(shù)x在自然數(shù)集中每取定一個值,應(yīng)付款y就有唯一一個值與其對應(yīng),我們可以運(yùn)用對應(yīng)關(guān)系y=2.5x去進(jìn)行方便的運(yùn)算。

      在這個例子中,我們發(fā)現(xiàn)自變更x只有在自然數(shù)集中取值才有意義,其實如果我們細(xì)心研究所有已知函數(shù),就會發(fā)現(xiàn)確定自變量x的取值范圍,是使用函數(shù)模型描述世界變化規(guī)律的前提.

      所以我們重新定義函數(shù),將自變量x的取值范圍用集合D來表示.

      函數(shù)的定義:

      在某一個變化的過程中有兩個變量x和y,設(shè)變量x的取值范圍為數(shù)集D,如果對于D內(nèi)的每一個x值,按照某個對應(yīng)法則f,y都有唯一確定的值與它對應(yīng)環(huán)節(jié)三

      知識總結(jié)

      (1)函數(shù)的概念。

      (2)強(qiáng)調(diào)用函數(shù)來研究事物變化規(guī)律的前提是確定自變量x的取值范圍,即定義域。

      學(xué)生回顧本次微課所學(xué)習(xí)的知識。讓學(xué)生回顧本節(jié)課學(xué)習(xí)內(nèi)容,強(qiáng)化本節(jié)課重點(diǎn),為下節(jié)課打下基礎(chǔ)。

      環(huán)節(jié)四實例檢測

      實例:文具店出售某種鉛筆,每只售價0.12元,應(yīng)付款額是購買鉛筆數(shù)的函數(shù),當(dāng)購買6支以內(nèi)(含6支)的鉛筆時,請用表達(dá)式來表示這個函數(shù).

      要求學(xué)生把做題結(jié)果拍成照片,發(fā)到郵箱,及時反饋.學(xué)生練習(xí),并把做題結(jié)果拍成照片,發(fā)到我的郵箱,并通過QQ與學(xué)生進(jìn)行交流實例鞏固今天學(xué)習(xí)的函數(shù)概念。

    高一數(shù)學(xué)教學(xué)設(shè)計8

      一、本節(jié)內(nèi)容在教材中的地位與作用:

      《函數(shù)的單調(diào)性》系人教版高中數(shù)學(xué)必修一的內(nèi)容,該內(nèi)容包括函數(shù)的單調(diào)性的定義與判斷及其證明。在初中學(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性.這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高.這節(jié)通過對具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確含義,明確指出函數(shù)的增減性是相對于某個區(qū)間來說的.教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系.函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的數(shù)形結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。

      二、學(xué)情、教法分析:

      按現(xiàn)行新教材結(jié)構(gòu)體系,學(xué)生只學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù),所以對函數(shù)的單調(diào)性研究也只能限于這幾種函數(shù)。依據(jù)現(xiàn)有認(rèn)知結(jié)構(gòu),學(xué)生只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大,函數(shù)值增大”的變化趨勢,而不能用符號語言進(jìn)行嚴(yán)密的代數(shù)證明,只能依據(jù)形的直觀性進(jìn)行感性判斷而不能進(jìn)行“思辯”的理性認(rèn)識。所以在教學(xué)中要找準(zhǔn)學(xué)生學(xué)習(xí)思維的“最近發(fā)展區(qū)”進(jìn)行有意義的建構(gòu)教學(xué)。在教學(xué)過程中,要注意學(xué)生第一次接觸代數(shù)形式的證明,為使學(xué)生能迅速掌握代數(shù)證明的格式,要注意讓學(xué)生在內(nèi)容上緊扣定義貫穿整個學(xué)習(xí)過程,在形式上要從有意識的模仿逐漸過渡到獨(dú)立的證明。

      三、教學(xué)目標(biāo)與教學(xué)重、難點(diǎn)的制定:

      依據(jù)課程標(biāo)準(zhǔn)的具體要求以及基于教材內(nèi)容的具體分析,制定本節(jié)課的教學(xué)目標(biāo)為:

      1.通過函數(shù)單調(diào)性的學(xué)習(xí),讓學(xué)生通過自主探究活動,體會數(shù)學(xué)概念的形成過程的真諦,學(xué)會運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。

      2.理解并掌握函數(shù)的單調(diào)性及其幾何意義,掌握用定義證明函數(shù)的'單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。

      3.能夠用函數(shù)的性質(zhì)解決生活中簡單的實際問題,使學(xué)生感受到學(xué)習(xí)單調(diào)性的必要性與重要性,增強(qiáng)學(xué)生學(xué)習(xí)函數(shù)的緊迫感,激發(fā)其積極性。

      在本節(jié)課的教學(xué)中以函數(shù)的單調(diào)性的概念為線,它始終貫穿于教師的整個課堂教學(xué)過程和學(xué)生的學(xué)習(xí)過程;利用函數(shù)的單調(diào)性的定義證明簡單函數(shù)的單調(diào)性是對函數(shù)單調(diào)性概念的深層理解,且“取值、作差與變形、判斷、結(jié)論”過程學(xué)生不易掌握。所以對教學(xué)的重點(diǎn)、難點(diǎn)確定如下:

      教學(xué)重點(diǎn):函數(shù)的單調(diào)性的判斷與證明;

      教學(xué)難點(diǎn):增、減函數(shù)形式化定義的形成及利用函數(shù)單調(diào)性的定義證明簡單函數(shù)的單調(diào)性。

      四、教材內(nèi)容簡析:

      本節(jié)主要內(nèi)容如下:

      (1)單調(diào)性的相關(guān)定義:一般地,設(shè)函數(shù)的定義域為I,區(qū)間AI:如果對于區(qū)間A內(nèi)的任意兩個值,當(dāng)時都有,那么就說在區(qū)間A上是增加(減少)的。此時,A是單調(diào)遞增(遞減)區(qū)間。

      注:關(guān)鍵詞:“區(qū)間AI:”、“任意”、“都”。區(qū)間AI表明判斷函數(shù)單調(diào)性首先判斷函數(shù)的定義域,“任意”表明不可以用兩個特定的值來確定函數(shù)是增函數(shù)還是減函數(shù),但是可以用來否定函數(shù)是增函數(shù)或者否定函數(shù)是減函數(shù),“都”表示單調(diào)區(qū)間中的每一個值無一例外。

      如果函數(shù)在定義域的某個子集上是增加或減少的,那么就稱這個函數(shù)在這個子集上具有單調(diào)性。如果函數(shù)在定義域是增加或減少的,那么就分別稱這個函數(shù)為增函數(shù)或減函數(shù),統(tǒng)稱為單調(diào)函數(shù)。

      (2)單調(diào)性的判斷與證明:

      ①單調(diào)性的判斷:圖像法、定義法;(注:兩個單調(diào)區(qū)間的“并”不一定是單調(diào)區(qū)間。)

      ②單調(diào)性的證明步驟歸結(jié)為五個步驟:取值、作差與變形、判斷、結(jié)論。

    高一數(shù)學(xué)教學(xué)設(shè)計9

      教學(xué)類型:探究研究型

      設(shè)計思路:通過一系列的猜想得出德.摩根律,但是這個結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進(jìn)行簡單的應(yīng)用,因此我們制作了本微課.

      教學(xué)過程:

      一、片頭

      (20秒以內(nèi))

      內(nèi)容:你好,現(xiàn)在讓我們一起來學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的數(shù)學(xué)規(guī)律(第二講)》。

      第 1 張PPT

      12秒以內(nèi)

      二、正文講解

      (4分20秒左右)

      1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)。”

      上節(jié)課老師和大家學(xué)習(xí)了集合的運(yùn)算,得出了一個有趣的規(guī)律。課后,你舉例驗證了這個規(guī)律嗎?

      那么,這個規(guī)律是偶然的,還是一個恒等式呢?

      第 2 張PPT

      28秒以內(nèi)

      2.規(guī)律的驗證:

      試用集合A,B的交集、并集、補(bǔ)集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用

      第 3 張PPT

      2分10 秒以內(nèi)

      3.抽象概括: 通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

      而這個規(guī)律就是180年前著名的英國數(shù)學(xué)家德摩根發(fā)現(xiàn)的。

      為了紀(jì)念他,我們將它稱為德摩根律。

      原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。

      第 4 張PPT

      30秒以內(nèi)

      4.例題應(yīng)用:使用例題形式,將的德摩根定律的結(jié)論加以應(yīng)用,讓學(xué)生更加熟悉集合的'運(yùn)算

      第 5 張PPT

      1分20秒以內(nèi)

      三、結(jié)尾

      (20秒以內(nèi))

      通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問題提供了更為簡便的方法。

      希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

      第 6 張PPT

      10秒以內(nèi)

      教學(xué)反思(自我評價)

      學(xué)生在學(xué)習(xí)集合時會接觸到很多的集合運(yùn)算,往往學(xué)生覺得這是集合中的難點(diǎn),因此本節(jié)課通過一系列的猜想,以精彩的動畫展示,讓學(xué)生在直觀的環(huán)境下輕松的學(xué)習(xí),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并通過層層深入的講解,讓學(xué)生進(jìn)一步加強(qiáng)對集合運(yùn)算的理解和應(yīng)用能力,效果非常好.

    【高一數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章:

    高一數(shù)學(xué)教學(xué)設(shè)計10-14

    高一數(shù)學(xué)教學(xué)設(shè)計03-29

    高一數(shù)學(xué)教學(xué)設(shè)計9篇05-02

    高一數(shù)學(xué)教學(xué)設(shè)計(精選11篇)08-10

    高一數(shù)學(xué)教學(xué)設(shè)計(9篇)05-06

    高一數(shù)學(xué)教學(xué)設(shè)計9篇05-06

    高一數(shù)學(xué)教學(xué)設(shè)計匯編9篇05-06

    數(shù)學(xué)教學(xué)教學(xué)設(shè)計04-15

    數(shù)學(xué)教學(xué)設(shè)計05-09

    數(shù)學(xué)教學(xué)設(shè)計06-12

    主站蜘蛛池模板: 国产精成人品日日拍夜夜| 国产一卡2卡三卡4卡免费网站| 日韩精品中文字幕人妻| 99RE6在线观看国产精品| 少妇愉情理伦片丰满丰满午夜| 99RE8这里有精品热视频| 狠狠噜天天噜日日噜| 中文字幕日韩国产精品| 日韩A人毛片精品无人区乱码| 国产爆乳无码一区二区麻豆| 中文字幕亚洲日韩无线码| 国产69精品久久久久999小说 | 欧美性色欧美A在线图片| 中文字幕久久国产精品| 国产精品福利自产拍在线观看| 久久精品国产99国产精品澳门| 亚洲人成网站免费播放| 国产一区日韩二区欧美三区| 在线观看AV永久免费| 国产在线午夜不卡精品影院 | 日本高清色WWW在线安全| 国产亚洲一区二区在线观看| 中文字幕av一区二区| 国产色综合久久无码有码| 中文人妻av高清一区二区| 手机看片日本在线观看视频| 精品无码一区二区三区在线| 99国精品午夜福利视频不卡99 | 欧美国产日产一区二区| 99久久无码私人网站| 最新国产麻豆AⅤ精品无码| 亚洲AV无码乱码在线观看牲色| 国产对白老熟女正在播放| 人人妻人人藻人人爽欧美一区| 国产线播放免费人成视频播放| 日韩电影免费在线观看网站| 日本高清色WWW在线安全| 日韩免费无砖专区2020狼| 国产成A人片在线观看视频下载| 深夜福利资源在线观看| 精品无码一区二区三区在线|