在线免费成人亚洲av,无码毛片一区二区本码视频,亚洲日韩一区精品射精,国产99视频精品免费视频36

            八年級數學教案

            時間:2022-11-16 13:09:40 數學教案 我要投稿

            八年級數學教案匯編15篇

              作為一名辛苦耕耘的教育工作者,往往需要進行教案編寫工作,教案有利于教學水平的提高,有助于教研活動的開展。我們該怎么去寫教案呢?以下是小編為大家整理的八年級數學教案,歡迎大家分享。

            八年級數學教案匯編15篇

            八年級數學教案1

              教學目標:

              1. 掌握三角形內角和定理及其推論;

              2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

              3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

              4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態

              5. 通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯系與轉化的辯證思想。

              教學重點:

              三角形內角和定理及其推論。

              教學難點:

              三角形內角和定理的證明

              教學用具:

              直尺、微機

              教學方法:

              互動式,談話法

              教學過程:

              1、創設情境,自然引入

              把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知欲,為發現新知識創造一個最佳的心理和認知環境。

              問題1 三角形三條邊的關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?

              問題2 你能用幾何推理來論證得到的關系嗎?

              對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)

              新課引入的好壞在某種程度上關系到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節課學習的內容自然合理。

              2、設問質疑,探究嘗試

              (1)求證:三角形三個內角的和等于

              讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

              問題1 觀察:三個內角拼成了一個

              什么角?問題2 此實驗給我們一個什么啟示?

              (把三角形的三個內角之和轉化為一個平角)

              問題3 由圖中AB與CD的關系,啟發我們畫一條什么樣的線,作為解決問題的橋梁?

              其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

              (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

              學生回答后,電腦顯示圖表。

              (3)三角形中三個內角之和為定值

              ,那么對三角形的其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?

              問題2 三角形一個外角與它不相鄰的兩個內角有何關系?

              問題3 三角形一個外角與其中的一個不相鄰內角有何關系?

              其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。

              這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

              3、三角形三個內角關系的定理及推論

              引導學生分析并嚴格書寫解題過程

            八年級數學教案2

              總課時:7課時 使用人:

              備課時間:第八周 上課時間:第十周

              第4課時:5、2平面直角坐標系(2)

              教學目標

              知識與技能

              1.在給定的直角坐標系下,會根據坐標描出點的位置;

              2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

              過程與方法

              1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

              2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

              情感態度與價值觀

              通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。

              教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

              教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

              教學過程

              第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

              在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

              練習:指出下列 各點以及所在象限或坐標軸:

              A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

              由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

              第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

              1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

              (-9,3),(-9,0),(-3,0),( -3,3)

              ( 學生操作完畢后)

              2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

              (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

              (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

              (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

              (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

              觀察所得的圖形,你覺得它像什么?

              分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?

              (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

              這個圖形像一棟房子旁邊還有一棵大樹。

              3.做一做

              (出示投影)

              在書上已建立的直角坐標系畫,要求每位同學獨立完成。

              (學生描點、畫圖)

              (拿出一位做對的學生的作品投影)

              你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

              (像貓臉)

              第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

              (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

              (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

              (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

              (3)(2,0)

              觀察所得的圖形,你覺得它像什么?(像移動的菱形)

              2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

              先獨立完成,然后小組討論是否正確。

              第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

              本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

              在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

              第五環節 布置作業

              習題5、4

              A組(優等生)1、2、3

              B組(中等生)1、2

              C組(后三分之一生)1、2

            八年級數學教案3

              第11章平面直角坐標系

              11。1平面上點的坐標

              第1課時平面上點的坐標(一)

              教學目標

              【知識與技能】

              1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。

              2。理解坐標平面內的點與有序實數對的一一對應關系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

              3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。

              【過程與方法】

              1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。

              2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。

              【情感、態度與價值觀】

              通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯系,感受到數學的價值。

              重點難點

              【重點】

              認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。

              【難點】

              理解坐標系中的坐標與坐標軸上的數字之間的關系。

              教學過程

              一、創設情境、導入新知

              師:如果讓你描述自己在班級中的位置,你會怎么說?

              生甲:我在第3排第5個座位。

              生乙:我在第4行第7列。

              師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。

              二、合作探究,獲取新知

              師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體

              的位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

              生:3排5號。

              師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

              生:用一個有序的實數對來表示。

              師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?

              生:可以。

              教師在黑板上作圖:

              我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為

              正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。

              師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了,F在請大家自己動手畫一個平面直角坐標系。

              學生操作,教師巡視。教師指正學生易犯的錯誤。

              教師邊操作邊講解:

              如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

              教師多媒體出示:

              師:如圖,請同學們寫出A、B、C、D這四點的坐標。

              生甲:A點的坐標是(—5,4)。

              生乙:B點的坐標是(—3,—2)。

              生丙:C點的坐標是(4,0)。

              生。篋點的坐標是(0,—6)。

              師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

              教師邊操作邊講解:

              在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

              學生動手作圖,教師巡視指導。

              三、深入探究,層層推進

              師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

              生:都一樣。

              師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?

              生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。

              師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

              生:能,在第二象限。

              四、練習新知

              師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。

              教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

              生甲:A點在第三象限。

              生乙:B點在第四象限。

              生丙:C點不屬于任何一個象限,它在y軸上。

              生丁:D點不屬于任何一個象限,它在x軸上。

              師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

              學生作圖,教師巡視,并予以指導。

              五、課堂小結

              師:本節課你學到了哪些新的知識?

              生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特征。

              教師補充完善。

              教學反思

              物體位置的說法和表述物體的位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯系。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯系感受坐標的實用性,增強了學生學習數學的興趣。

              第2課時平面上點的坐標(二)

              教學目標

              【知識與技能】

              進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

              【過程與方法】

              通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發展抽象思維能力。

              【情感、態度與價值觀】

              培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

              重點難點

              【重點】

              理解平面上的點連接成的圖形,計算圍成的圖形的面積。

              【難點】

              不規則圖形面積的求法。

              教學過程

              一、創設情境,導入新知

              師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

              學生作圖。

              教師邊操作邊講解:

              二、合作探究,獲取新知

              師:現在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

              生甲:三角形。

              生乙:直角三角形。

              師:你能計算出它的面積嗎?

              生:能。

              教師挑一名學生:你是怎樣算的呢?

              生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

              師:很好!

              教師邊操作邊講解:

              大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

              圖形?

              學生完成操作后回答:平行四邊形。

              師:你能計算它的面積嗎?

              生:能。

              教師挑一名學生:你是怎么計算的呢?

              生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

              教師多媒體出示下圖:

            八年級數學教案4

              《正方形》教學設計

              教學內容分析:

             、艑W習特殊的平行四邊形—正方形,它的特殊的性質和判定。

             、魄懊鎸W習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

              ⑶對本節的學習,繼續培養學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發展學生的推理能力。

              學生分析

             、艑W生在小學初步認識了正方形,并且本節課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。

             、茖W生在上幾節已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

              教學目標:

             、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

             、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

             、乔楦袘B度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

              重點:掌握正方形的性質與判定,并進行簡單的推理。

              難點:探索正方形的判定,發展學生的推理能

              教學方法:類比與探究

              教具準備:可以活動的四邊形模型。

              一、教學分析

              (一)教學內容分析

              1.教材:義務教育課程標準實驗教科書《數學》九年級上冊(人民教育出版社)

              2.本課教學內容的地位、作用,知識的前后聯系

              《中心對稱圖形》是新人教版九年級數學上冊第二十三章第二單元第二節課的內容。本節教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發學生探索精神和創新意識等方面都有重要意義。

              3.本課教學內容的特點,重點分析體現新課程理念的特點

              本節課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產生和發展過程,培養學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環環相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規律,有利于激發學生的學習情趣。

              (二)教學對象分析

              1.學生所在地區、學校及班級的特色

              我授課的班級是西安市閻良區振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經積累一些經驗,已經具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現分化現象。

              2.學生的年齡特點和認知特點

              班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現欲望較為強烈,喜好發表個人見解并且具有一定的合作交流、共同探討的意識與經驗,因此在課程內容的安排中,適當地創設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。

              教學過程

              一:復習鞏固,建立聯系

              【教師活動

              問題設置:①平行四邊形、矩形,菱形各有哪些性質?

             、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

              【學生活動

              學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

              【教師活動

              評析學生的結果,給予表揚。

              總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區別。

              演示平行四邊形變為矩形菱形的過程。

              二:動手操作,探索發現。

              活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

              【學生活動

              學生拿出自備矩形紙片,動手操作,不難發現它是正方形。

              設置問題:①什么是正方形?

              觀察發現,從活動中體會。

              【教師活動】:演示矩形變為正方形的過程,菱形變為正方形的過程。

              【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。

              設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

              【學生活動】

              小組討論,分組回答。

              【教師活動】

              總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

              設置問題③正方形有那些性質?

              【學生活動】

              小組討論,舉手搶答。

              【教師活動

              表揚學生發言,板書學生發現,㈡正方形每一條對角線平分一組對角

              活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

              學生活動

              折紙發現,說出自己的發現。得到正方形的又一性質。正方形是軸對稱圖形。

              教師活動

              演示從平行四邊形變為正方形的過程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

              ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

              學生活動

              小組充分交流,表達不同的意見。

              教師活動

              評析活動,總結發現:

              一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

              有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

              有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

              四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

              以上是正方形的判定方法。

              正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?

              學生交流,感受正方形

              三,應用體驗,推理證明。

              出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數。

              方法一解:∵四邊形ABCD是正方形

              ∴∠ABC=90°(正方形的四個角是直角)

              BC=AB=4cm(正方形的四條邊相等)

              ∴=45°(等腰直角三角形的底角是45°)

              ∴利用勾股定理可知,AC===4cm

              ∵AO=AC(正方形的對角線互相平分)

              ∴AO=×4=2cm

              方法二:證明△AOB是等腰直角三角形,即可得證。

              學生活動

              獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

              教師活動

              總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

              出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

              學生活動

              小組交流,分析題意,整理思路,指名口答。

              教師活動

              說明思路,從已知出發或者從已有的判定加以選擇。

              四,歸納新知,梳理知識。

              這一節課你有什么收獲?

              學生舉手談論自己的收獲。

              請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

              發表評論

              教學目標:

              情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

              能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

              認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

              教學重點、難點

              重點:等腰梯形性質的探索;

              難點:梯形中輔助線的添加。

              教學課件:PowerPoint演示文稿

              教學方法:啟發法、

              學習方法:討論法、合作法、練習法

              教學過程:

             。ㄒ唬⿲

              1、出示圖片,說出每輛汽車車窗形狀(投影)

              2、板書課題:5梯形

              3、練習:下列圖形中哪些圖形是梯形?(投影)

              結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

              5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

              6、特殊梯形的分類:(投影)

             。ǘ┑妊菪涡再|的探究

              【探究性質一】

              思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

              猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

              如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

              想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

              等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

              【操練】

              (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

              (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

              【探究性質二】

              如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

              如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

              等腰梯形性質:等腰梯形的兩條對角線相等。

              【探究性質三】

              問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

              問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

              等腰梯形性質:同以底上的兩個內角相等,對角線相等

             。ㄈ┵|疑反思、小結

              讓學生回顧本課教學內容,并提出尚存問題;

              學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

            八年級數學教案5

              一、教學目標

              ①經歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結果都是整式),培養學生獨立思考、集體協作的能力。

             、诶斫庹匠ǖ乃憷恚l展有條理的思考及表達能力。

              二、教學重點與難點

              重點:整式除法的運算法則及其運用。

              難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。

              三、教學準備

              卡片及多媒體課件。

              四、教學設計

             。ㄒ唬┣榫骋

              教科書第161頁問題:木星的質量約為1。90×1024噸,地球的質量約為5。98×1021噸,你知道木星的質量約為地球質量的多少倍嗎?

              重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

              注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數學與現實世界的聯系,同時再次經歷感受較大數據的過程。

             。ǘ┨骄啃轮

             。1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據是什么?

             。2)你能利用(1)中的方法計算下列各式嗎?

              8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

              (3)你能根據(2)說說單項式除以單項式的運算法則嗎?

              注:教師可以鼓勵學生自己發現系數、同底數冪的底數和指數發生的變化,并運用自己的語言進行描述。

              單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質,并能運用乘除互逆的關系加以說明,也可類比分數的約分進行。在這些活動過程中,學生的化歸、符號演算等代數推理能力和有條理的表達能力得到進一步發展。重視算理算法的滲透是新課標所強調的。

             。ㄈw納法則

              單項式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

              注:通過總結法則,培養學生的概括能力,養成用數學語言表達自己想法的數學學習習慣。

              (四)應用新知

              例2計算:

             。1)28x4y2÷7x3y;

             。2)—5a5b3c÷15a4b。

              首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成?谑龊桶鍟紤⒁庹故痉▌t的應用,計算過程要詳盡,使學生盡快熟悉法則。

              注:單項式除以單項式,既要對系數進行運算,又要對相同字母進行指數運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現照看不全的情況,所以更應督促學生細心解答問題。

              鞏固新知教科書第162頁練習1及練習2。

              學生自己嘗試完成計算題,同桌交流。

              注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養學生良好的思維習慣和主動參與學習的習慣。

              (五)作業

              1、必做題:教科書第164頁習題15。3第1題;第2題。

              2、選做題:教科書第164頁習題15。3第8題

            八年級數學教案6

              教學目標:

              1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。

              2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。

              3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。

              重點與難點:

              重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。

              難點:分析典型圖案的設計意圖。

              疑點:在設計的圖案中清晰地表現自己的設計意圖

              教具學具準備:

              提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

              教學過程設計:

              1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)

              明確在欣賞了圖案后,簡單地復習平移、旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。

              2、課本

              1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

              評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。

              評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

              (二)課內練習

              (1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。

              (2) 利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。

              (三)議一議

              生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。

              (四)課時小結

              本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。

              通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)

              八年級數學上冊教案(五)延伸拓展

              進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。

            八年級數學教案7

              【教學目標】

              知識目標:

              解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。

              能力目標:

             。1)經歷探索乘法運算法則的過程,發展觀察、歸納、猜測、驗證等能力;

              (2)體會乘法分配律的作用與轉化思想,發展有條理的思考及語言表達能力。

              情感目標:

              充分調動學生學習的積極性、主動性

              【教學重點】

              單項式與多項式的乘法運算

              【教學難點】

              推測整式乘法的運算法則。

              【教學過程】

              一、復習引入

              通過對已學知識的復習引入課題(學生作答)

              1.請說出單項式與單項式相乘的法則:

              單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,對于只在一個單項式里出現的字母,則連同它的指數作為積的一個因式。

             。ㄏ禂怠料禂担粒ㄍ帜竷缦喑耍羻为毜膬

              例如:( 2a2b3c) (-3ab)

              解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

              = -6a3b4c

              2.說出多項式2x2-3x-1的項和各項的系數項分別為:2x2、-3x、-1系數分別為:2、-3、-1

              問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?

              這便是我們今天要研究的問題。

              二、新知探究

              已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)

              現將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc

              上一等式根據什么規律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學生分組討論:前后座為一組;找個別同學作答,教師作評)

              結論單項式與多項式相乘的運算法則:

              用單項式分別去乘多項式的每一項,再把所得的積相加。

              用字母表示為:m(a+b+c)=ma+mb+mc

              運算思路:單×多

              轉化

              分配律

              單×單

              三、例題講解

              例計算:(1)(-2a2)· (3ab2– 5ab3)

             。2)(- 4x) ·(2x2+3x-1)

              解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

              (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

            八年級數學教案8

              一、教學目的

              1、 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

              2、 熟識等邊三角形的性質及判定、

              2、通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

              二、教學重點

              等腰三角形的性質及其應用。

              三、教學難點

              簡潔的邏輯推理。

              四、教學過程

              (一)復習鞏固

              1、敘述等腰三角形的性質,它是怎么得到的?

              等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。

              等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

              2、若等腰三角形的兩邊長為3和4,則其周長為多少?

             。ǘ┬抡n

              在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

              等邊三角形具有什么性質呢?

              1、請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

              2、你能否用已知的知識,通過推理得到你的猜想是正確的?

              等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。

              3、上面的條件和結論如何敘述?

              等邊三角形的各角都相等,并且每一個角都等于60。

              等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

              等邊三角形也稱為正三角形。

              例1、在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數。

              分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

              問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

              問題2:求1是否還有其它方法?

             。ㄈ┚毩曥柟

              1、判斷下列命題,對的打,錯的打。

              a、等腰三角形的角平分線,中線和高互相重合( )

              b、有一個角是60的等腰三角形,其它兩個內角也為60( )

              2、如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。

             。ㄋ模┬〗Y

              由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

              (五)作業

              1、課本P127─7,9

              2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

              EOD的度數。

              (一)課本P127─1、3、4、8題、

            八年級數學教案9

               一、學習目標及重、難點:

              1、了解方差的定義和計算公式。

              2、理解方差概念的產生和形成的過程。

              3、會用方差計算公式來比較兩組數據的波動大小。

              重點:方差產生的必要性和應用方差公式解決實際問題。

              難點:理解方差公式

              二、自主學習:

              (一)知識我先懂:

              方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

              我們用它們的平均數,表示這組數據的方差:即用

              來表示。

              給力小貼士:方差越小說明這組數據越 。波動性越 。

              (二)自主檢測小練習:

              1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

              2、甲、乙兩組數據如下:

              甲組:10 9 11 8 12 13 10 7;

              乙組:7 8 9 10 11 12 11 12.

              分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

              三、新課講解:

              引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

              甲:9、10、 10、13、7、13、10、8、11、8;

              乙:8、13、12、11、10、12、7、7、10、10;

              問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

              (2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

              歸納: 方差:設有n個數據 ,各數據與它們的平均數的.差的平方分別是

              我們用它們的平均數,表示這組數據的方差:即用 來表示。

              (一)例題講解:

              例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、

              測試次數 第1次 第2次 第3次 第4次 第5次

              段巍 13 14 13 12 13

              金志強 10 13 16 14 12

              給力提示:先求平均數,在利用公式求解方差。

              (二)小試身手

              1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

              甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

              經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

              去參加比賽。

              1、求下列數據的眾數:

              (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

              2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

              四、課堂小結

              方差公式:

              給力提示:方差越小說明這組數據越 。波動性越 。

              每課一首詩:求方差,有公式;先平均,再求差;

              求平方,再平均;所得數,是方差。

              五、課堂檢測:

              1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

              小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

              六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

              七、學習小札記:

              寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

            八年級數學教案10

              一、教材分析教材的地位和作用:

              本節內容是第一課時《軸對稱》,本節立足于學生已有的生活經驗和數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度認識軸對稱的特征;同時本節內容與圖形的三種變換操作(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯系,通過對這一節課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質及后面學習等腰三角形和圓等有關知識奠定基礎。同時這一節也是聯系數學與生活的橋梁。

              二、學情分析

              八年級學生有一定的知識水平,已經初步形成了一定觀察能力、語言表達能力,這節課是在學生學習了“全等三角形”相關內容之后安排的一節課,學生已經具備了一定的推理能力,因此,這節課通過觀察生活中的實例和動手實踐,讓學生自己去發現和總結軸對稱圖形和軸對稱的概念及它們之間的區別與聯系是切實可行的。

              三、教學目標及重點、難點的確定

              根據新課程標準、教材內容特點、和學生已有的認知結構、心理特征,我確定本節教學目標、重點、難點如下:

              (一)教學目標:

              1、知識技能

              (1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

              (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.

              (3)了解軸對稱圖形和軸對稱的聯系與區別.

              2、過程與方法目標

              經歷“觀察——比較——操作——概括——總結一應用”的學習過程,培養學生的動手實踐能力、抽象思維和語言表達能力.

              3、情感、態度與價值觀

              通過對生活中數學問題的探究,進一步提高學生學數學、用數學的意識,在自主探究、合作交流的過程中,體會數學的重要作用,培養學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。

              (二)教學重點:軸對稱圖形和軸對稱的有關概念.

              (三)教學難點:軸對稱圖形與軸對稱的聯系、區別

              .四、教法和學法設計

              本節課根據教材內容的特點和八年級學生的知識結構和心理特征。我選擇的:

              【教法策略】采用以直觀演示法和實驗發現法為主,設疑誘導法為輔。教學中教學中通過豐富的圖片展示,創設出問題情景,誘導學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發學生探求知識的欲望,逐步推導歸納得出結論,使學生始終處于主動探索問題的積極狀態,使不同層次學生的知識水平得到恰當的發展和提高。

              【學法策略】:讓學生在“觀察----比較——操作——概括——檢驗——應用”的學習過程中,自主參與知識的發生、發展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節課的有關內容。

              【輔助策略】我利用多媒體課件輔助教學,適時呈現問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率

              五、說程序設計:

              新的課程標準指出學生的學習內容應該是現實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數學活動。為了達到預期的教學目標,我對整個教學過程進行了設計。

              (一)、觀圖激趣、設疑導入。

              出示圖片,設計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

              [設計意圖]以興趣為先導,創設學生喜聞樂見的故事情景,激發了學生濃厚的學習興趣,

              (二)、實踐探索、感悟特征.

              《活動一(課件演示)觀察這些圖形有什么特點?》在這個環節中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當地引導,讓學生發現:把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

              為了進一步認識軸對稱圖形的特點又出示了一組練習

              (練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

              [設計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

              (練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發了學生的學習興趣,而且也拓展了學生的知識面。

              (三)、動手操作、再度探索新知。

              將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養學生的動手能力,從而引出軸對稱概念。

              再次引導學生討論、歸納得出軸對稱的概念……。之后再結合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結合圖形加以認識。

              (四)、鞏固練習、升華新知。

              出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,

              在這組練習中讓學生動手、動口、動眼、動腦,充分調動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區別與聯系,先讓學生自己歸納,然后用多媒體展示。

              (課件演示)軸對稱圖形及兩個圖形成軸對稱區別與聯系

              (五)、綜合練習、發展思維。

              1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

              2、判斷:

              生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數字、字母和漢字中也有一些可以看成軸對稱圖形。

              (1)下面的數字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

              0123456789ABCDEFGH

              3、像這樣寫法的漢字哪些是軸對稱圖形?

              口工用中由日直水清甲

              (這幾道題的練習做到了知識性、技能性、思想性和藝術性溶為一體。這樣設計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發了學生的學習興趣,又讓學生感到數學就在自己的身邊)

              (六)歸納小結、布置作業

              [設計意圖]培養學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。作業布置要有層次,照顧學生個體差異使不同的人在數學上獲得不同的發展!

              六、設計說明

              這節課,我依據課程標準、教材特點、遵循學生的認知規律。通過六個環節的教學設計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關于直線成軸對稱兩個概念,指導學生操作、觀察、引導概括,獲取新知;同時注重培養學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節課的理解和說明。

            八年級數學教案11

              一、學習目標

              1.多項式除以單項式的運算法則及其應用。

              2.多項式除以單項式的運算算理。

              二、重點難點

              重點:多項式除以單項式的運算法則及其應用。

              難點:探索多項式與單項式相除的運算法則的過程。

              三、合作學習

             。ㄒ唬┗仡檰雾検匠詥雾検椒▌t

             。ǘ⿲W生動手,探究新課

              1.計算下列各式:

             。1)(am+bm)÷m;

              (2)(a2+ab)÷a;

             。3)(4x2y+2xy2)÷2xy。

              2.提問:

              ①說說你是怎樣計算的;

             、谶有什么發現嗎?

             。ㄈ┛偨Y法則

              1.多項式除以單項式:先把這個多項式的每一項除以XXXXXXXXXXX,再把所得的商XXXXXX

              2.本質:把多項式除以單項式轉化成XXXXXXXXXXXXXX

              四、精講精練

              例:(1)(12a3—6a2+3a)÷3a;

              (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

             。3)[(x+y)2—y(2x+y)—8x]÷2x;

              (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

              隨堂練習:教科書練習。

              五、小結

              1、單項式的除法法則

              2、應用單項式除法法則應注意:

              A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號;

              B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

              C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

              D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;

              E、多項式除以單項式法則。

            八年級數學教案12

              一、教學目標:

              1、知道負整數指數冪=(a≠0,n是正整數)、

              2、掌握整數指數冪的運算性質、

              3、會用科學計數法表示小于1的數、

              二、教學重點:

              掌握整數指數冪的運算性質、

              三、難點:

              會用科學計數法表示小于1的數、

              四、情感態度與價值觀:

              通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐、能利用事物之間的類比性解決問題、

              五、教學過程:

             。ㄒ唬┱n堂引入

              1、回憶正整數指數冪的運算性質: (1)同底數的冪的乘法:am?an = am+n (m,n是正整數); (2)冪的乘方:(am)n = amn (m,n是正整數); (3)積的乘方:(ab)n = anbn (n是正整數); (4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n); (5)商的乘方:()n = (n是正整數);

              2、回憶0指數冪的規定,即當a≠0時,a0 = 1、

              3、你還記得1納米=10?9米,即1納米=米嗎?

              4、計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、

              (二)總結: 一般地,數學中規定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發學生由特殊情形入手,來看這條性質是否成立、 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的、

             。ㄈ┛茖W記數法:

              我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數、 啟發學生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發現其中的規律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1、

            八年級數學教案13

              一、學生起點分析

              學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

              反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

              可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

              二、學習任務分析

              本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

              并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

              ● 知識與技能目標

              1.理解勾股定理逆定理的具體內容及勾股數的概念;

              2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

              ● 過程與方法目標

              1.經歷一般規律的探索過程,發展學生的抽象思維能力;

              2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

              ● 情感與態度目標

              1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

              2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

              教學重點

              理解勾股定理逆定理的具體內容。

              三、教法學法

              1.教學方法:實驗猜想歸納論證

              本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

              但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

              (1)從創設問題情景入手,通過知識再現,孕育教學過程;

              (2)從學生活動出發,通過以舊引新,順勢教學過程;

              (3)利用探索,研究手段,通過思維深入,領悟教學過程。

              2.課前準備

              教具:教材、電腦、多媒體課件。

              學具:教材、筆記本、課堂練習本、文具。

              四、教學過程設計

              本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

              登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

              第一環節:情境引入

              內容:

              情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

              2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

              意圖:

              通過情境的創設引入新課,激發學生探究熱情。

              效果:

              從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

              第二環節:合作探究

              內容1:探究

              下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

              1.這三組數都滿足 嗎?

              2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

              意圖:

              通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

              效果:

              經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

              從上面的分組實驗很容易得出如下結論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              內容2:說理

              提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

              意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

              如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

              滿足 的三個正整數,稱為勾股數。

              注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

              活動3:反思總結

              提問:

              1.同學們還能找出哪些勾股數呢?

              2.今天的結論與前面學習勾股定理有哪些異同呢?

              3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

              4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

              意圖:進一步讓學生認識該定理與勾股定理之間的關系

              第三環節:小試牛刀

              內容:

              1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

             、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

              解答:①②

              2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

              A 250 B 150 C 200 D 不能確定

              解答:B

              3.如圖1:在 中, 于 , ,則 是( )

              A 等腰三角形 B 銳角三角形

              C 直角三角形 D 鈍角三角形

              解答:C

              4.將直角三角形的三邊擴大相同的倍數后, (圖1)

              得到的三角形是( )

              A 直角三角形 B 銳角三角形

              C 鈍角三角形 D 不能確定

              解答:A

              意圖:

              通過練習,加強對勾股定理及勾股定理逆定理認識及應用

              效果

              每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

              第四環節:登高望遠

              內容:

              1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

              解答:符合要求 , 又 ,

              2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

              解答:由題意畫出相應的圖形

              AB=240海里,BC=70海里,,AC=250海里;在△ABC中

              =(250+240)(250-240)

              =4900= = 即 △ABC是Rt△

              答:船轉彎后,是沿正西方向航行的。

              意圖:

              利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

              效果:

              學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

              第五環節:鞏固提高

              內容:

              1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

              解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

              2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

              圖4 圖5

              解答:④⑤是直角三角形,①②③⑥不是直角三角形

              意圖:

              第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

              效果:

              學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

              第六環節:交流小結

              內容:

              師生相互交流總結出:

              1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

              2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

              意圖:

              鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

              效果:

              學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

              第七環節:布置作業

              課本習題1.4第1,2,4題。

              五、教學反思:

              1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

              2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

              3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

              4.注重對學習新知理解應用偏困難的學生的進一步關注。

              5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

              由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

              附:板書設計

              能得到直角三角形嗎

              情景引入 小試牛刀: 登高望遠

            八年級數學教案14

              知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

              能力目標:會用變化的量描述事物

              情感目標:回用運動的觀點觀察事物,分析事物

              重點:函數的概念

              難點:函數的概念

              教學媒體:多媒體電腦,計算器

              教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

              教學設計:

              引入:

              信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

              新課:

              問題:(1)如圖是某日的氣溫變化圖。

              ① 這張圖告訴我們哪些信息?

             、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的?

              (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

             、 這表告訴我們哪些信息?

              ② 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

              一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

              范例:例1 判斷下列變量之間是不是函數關系:

              (5) 長方形的寬一定時,其長與面積;

              (6) 等腰三角形的底邊長與面積;

              (7) 某人的年齡與身高;

              活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

              思考:自變量是否可以任意取值

              例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

              (1) 寫出表示y與x的函數關系式.

              (2) 指出自變量x的取值范圍.

              (3) 汽車行駛200km時,油箱中還有多少汽油?

              解:(1)y=50-0.1x

              (2)0500

              (3)x=200,y=30

              活動2:練習教材9頁練習

              小結:(1)函數概念

              (2)自變量,函數值

              (3)自變量的取值范圍確定

              作業:18頁:2,3,4題

            八年級數學教案15

              一、課堂導入

              回顧平行四邊的性質定理及定義

              1.什么叫平行四邊形?平行四邊形有什么性質?

              2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)

              根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?

              二、新課講解

              平行四邊形的判定:

              (定義法):兩組對邊分別平行的四邊形的平邊形。

              幾何語言表達定義法:

              ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

              解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

              活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。

              (平行四邊形判定定理):

              (一)兩組對邊分別相等的四邊形是平行四邊形。

              設問:這個命題的前提和結論是什么?

              已知:四邊形ABCD中,AB=CD,BC=DA。

              求證:四邊ABCD是平行四邊形。

              分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。

              板書證明過程。

              小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:

              平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

              (二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

              活動:課本探究內容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

              設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)

            【八年級數學教案】相關文章:

            八年級的數學教案10-11

            八年級數學教案06-01

            八年級數學教案11-13

            八年級上冊數學教案07-26

            八年級數學教案優秀03-16

            八年級下冊數學教案08-30

            八年級上學期數學教案07-20

            八年級數學教案3篇03-15

            八年級數學教案15篇06-13

            八年級數學教案(15篇)06-14

            主站蜘蛛池模板: 色一情一乱一区二区三区| 欧美乱人伦人妻中文字幕| 免费国产成人| 国产三级综合| 鲁丝一区二区三区免费| 五十六十日本老熟妇乱| av在线播放网| 日韩操片| 色老大网站| 国内精品无码一区二区三区| 自拍偷自拍亚洲精品10p| 成人免费视频播放| 肉色之夜:巨乳朋友女友的诱惑 | 亚洲a∨国产av综合av麻豆丫| 欧美精品免费观看二区| 久久国产美女| 在线观看18视频网站| 国产最新精品| 最近2019免费中文第一页| 日日摸天天摸爽爽狠狠97| 久久国产精品久久久久久电车| 三级色网站| 亚洲精品熟女一区二区| 国产成人无码午夜视频在线观看| xoxoxo亚洲国产精品| 日韩国产欧美精品| 日日夜夜综合网| 国产乱码1卡二卡3卡四卡5| 无码综合天天久久综合网色吧影院| 99热最新精品| 欧美一区二区日韩| 快猫成人短视频| 日本丶国产丶欧美色综合| 亚洲国产成人精品无码区花野真一| 日本猛少妇色xxxxx猛叫| 日本91看片| 欧美日韩不卡在线| 国产午夜无码视频在线观看| 精品亚洲欧美视频在线观看| 国产免费破外女真实出血视频| 男人添女人下部视频免费|