<th id="6yc0e"></th>
  • <samp id="6yc0e"><pre id="6yc0e"></pre></samp>
  • <ul id="6yc0e"><pre id="6yc0e"></pre></ul><ul id="6yc0e"><pre id="6yc0e"></pre></ul>
    <samp id="6yc0e"><pre id="6yc0e"></pre></samp>
  • <th id="6yc0e"></th>
    <samp id="6yc0e"></samp>
  • <kbd id="6yc0e"><pre id="6yc0e"></pre></kbd>
    <samp id="6yc0e"></samp>
    <ul id="6yc0e"><tbody id="6yc0e"></tbody></ul>
  • <samp id="6yc0e"></samp>
  • 在线免费成人亚洲av,无码毛片一区二区本码视频,亚洲日韩一区精品射精,国产99视频精品免费视频36

    初中2次函數知識點總結

    時間:2021-04-11 18:56:05 總結 我要投稿

    初中2次函數知識點總結

      導語:對初中2次函數知識點,同學們有必要進行總結。以下是初中2次函數知識點總結,供大家閱讀。

    初中2次函數知識點總結

      I、定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

      (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。

      二次函數表達式的右邊通常為二次三項式。

      II、二次函數的三種表達式

      一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

      頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

      交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

      III、二次函數的圖像

      在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

      IV、拋物線的性質

      1、拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

      對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2、拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

      3、二次項系數a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

      4、一次項系數b和二次項系數a共同決定對稱軸的位置。

      當a與b同號時(即ab>0),對稱軸在y軸左;

      當a與b異號時(即ab<0),對稱軸在y軸右。

      5、常數項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6、拋物線與x軸交點個數

      Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

      Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

      Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

      V、二次函數與一元二次方程

      特別地,二次函數(以下稱函數)y=ax^2+bx+c,

      當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

      此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。

      1、二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

      當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

      當h<0時,則向左平行移動|h|個單位得到。

      當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

      當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的`圖象;

      當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

      當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

      因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。

      2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a)。

      3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大。若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。

      4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c);

      (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

      (a≠0)的兩根。這兩點間的距離AB=|x-x|

      當△=0。圖象與x軸只有一個交點;

      當△<0。圖象與x軸沒有交點。當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0。

      5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a。

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

      6、用待定系數法求二次函數的解析式

      (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

      y=ax^2+bx+c(a≠0)。

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0)。

      (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

      7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現。

    【初中2次函數知識點總結】相關文章:

    數學初中知識點總結04-25

    初中數學重要知識點總結04-25

    初中數學分式知識點總結04-22

    初中中考數學知識點總結04-22

    中考初中數學知識點總結04-22

    初中英語知識點總結04-24

    人教版初中數學圓知識點總結04-24

    初中數學重點知識點總結04-24

    初中數學必學的知識點總結04-24

    關于初中數學知識點總結04-24

    主站蜘蛛池模板: 少妇粗大进出白浆嘿嘿视频 | 国产精品99中文字幕| 草裙社区精品视频播放| 美女内射无套日韩免费播放| 少妇人妻AV无码专区| 少妇粗大进出白浆嘿嘿视频| 久久无码人妻丰满熟妇区毛片| 日韩一区在线中文字幕| 一区二区三区无码高清视频| 国产第一页浮力影院入口| 日本高清无卡码一区二区| 精品无码久久久久久尤物| 久久人妻无码一区二区| 国产精品视频一区不卡| 大学生久久香蕉国产线看观看| 亚洲av免费成人在线| 最近2019中文字幕大全视频1| 国产精成人品日日拍夜夜| 亚洲中文字幕久久精品无码喷水| 永久免费无码成人网站| av色国产色拍| 国产很色很黄很大爽的视频| 精品一区二区免费不卡| 免费无码国产欧美久久18| 精品免费看国产一区二区| 日产一二三四乱码| 亚洲乱码中文字幕小综合| 国产午夜亚洲精品国产成人| 中文字幕人成乱码中文乱码| 18禁成人免费无码网站| 欧美成人精品三级在线观看| 色一乱一伦一图一区二区精品| 中文字幕国产精品专区| 午夜男女爽爽爽影院在线视频 | 一本色道久久综合亚洲精品 | 护士张开腿被奷日出白浆| 亚洲午夜成人精品电影在线观看| 又爽又黄又无遮挡的激情视频免费 | 婷婷久久香蕉五月综合加勒比 | 国产精品一区二区久久不卡| 国产综合久久99久久|