<th id="6yc0e"></th>
  • <samp id="6yc0e"><pre id="6yc0e"></pre></samp>
  • <ul id="6yc0e"><pre id="6yc0e"></pre></ul><ul id="6yc0e"><pre id="6yc0e"></pre></ul>
    <samp id="6yc0e"><pre id="6yc0e"></pre></samp>
  • <th id="6yc0e"></th>
    <samp id="6yc0e"></samp>
  • <kbd id="6yc0e"><pre id="6yc0e"></pre></kbd>
    <samp id="6yc0e"></samp>
    <ul id="6yc0e"><tbody id="6yc0e"></tbody></ul>
  • <samp id="6yc0e"></samp>
  • 在线免费成人亚洲av,无码毛片一区二区本码视频,亚洲日韩一区精品射精,国产99视频精品免费视频36

    高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié)

    時(shí)間:2022-01-12 10:20:43 總結(jié) 我要投稿

    高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié)

      導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)自變量的增量趨于零時(shí),因變量的增量與自變量的增量之商的極限。高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié),歡迎參考。

    高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié)1

      一、早期導(dǎo)數(shù)概念——特殊的形式大約在1629年法國(guó)數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫(xiě)一篇手稿《求最大值與最小值的方法》。在作切線時(shí)他構(gòu)造了差分f(A+E)-f(A),發(fā)現(xiàn)的因子E就是我們所說(shuō)的導(dǎo)數(shù)f(A)。

      二、17世紀(jì)——廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開(kāi)始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說(shuō)的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無(wú)窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無(wú)窮級(jí)數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。

      三、19世紀(jì)導(dǎo)數(shù)——逐漸成熟的理論1750年達(dá)朗貝爾在為法國(guó)科學(xué)家院出版的《百科全書(shū)》第五版寫(xiě)的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號(hào)簡(jiǎn)單表示{d/dx)=li(/x)。1823年柯西在他的《無(wú)窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無(wú)窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε-δ語(yǔ)言對(duì)微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見(jiàn)的形式。

      四、實(shí)無(wú)限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個(gè)部分。一個(gè)是實(shí)無(wú)限理論即無(wú)限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無(wú)限指一種意識(shí)形態(tài)上的過(guò)程比如無(wú)限接近。就歷史來(lái)看兩種理論都有一定的道理。其中實(shí)無(wú)限用了150年后來(lái)極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長(zhǎng)期爭(zhēng)論的問(wèn)題后來(lái)由波粒二象性來(lái)統(tǒng)一。微積分無(wú)論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

      高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié)2

      導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線切線問(wèn)題)

      1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作:

      2、導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

      ①=f/(x0)表示過(guò)曲線=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

      3、常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:

      4、導(dǎo)數(shù)的四則運(yùn)算法則:

      5、導(dǎo)數(shù)的應(yīng)用:

      (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

      注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

      (2)求極值的`步驟:

      ①求導(dǎo)數(shù);

      ②求方程的根;

      ③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

      (3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

      ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。

      導(dǎo)數(shù)與物理,幾何,代數(shù)關(guān)系密切:在幾何中可求切線;在代數(shù)中可求瞬時(shí)變化率;在物理中可求速度、加速度。學(xué)好導(dǎo)數(shù)至關(guān)重要,一起來(lái)學(xué)習(xí)高二數(shù)學(xué)導(dǎo)數(shù)的定義知識(shí)點(diǎn)歸納吧!

      導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f(x0)或df(x0)/dx。

      導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。

      不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

      對(duì)于可導(dǎo)的函數(shù)f(x),xf(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

      設(shè)函數(shù)=f(x)在點(diǎn)x0的某個(gè)鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時(shí),相應(yīng)地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當(dāng)Δx→0時(shí)極限存在,則稱函數(shù)=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限為函數(shù)=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),也記作│x=x0或d/dx│x=x0

    【高二數(shù)學(xué)導(dǎo)數(shù)模塊知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納12-29

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)通用15篇12-29

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(匯編15篇)12-29

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集合15篇12-29

    高二化學(xué)知識(shí)點(diǎn)總結(jié)01-06

    高二化學(xué)知識(shí)點(diǎn)總結(jié)05-04

    高二物理知識(shí)點(diǎn)總結(jié)05-04

    高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-18

    高二化學(xué)選修三知識(shí)點(diǎn)總結(jié)01-07

    高二物理重要的知識(shí)點(diǎn)總結(jié)01-06

    主站蜘蛛池模板: 国产69精品久久久久99尤物| 国产精品 自在自线| 蜜芽久久人人超碰爱香蕉| 一区二区三区无码高清视频| 人妻人人澡人人添人人爽| 韩国三级理论无码电影在线观看| 97久久天天综合色天天综合色HD| 亚洲精品一区二区麻豆| 欧美孕妇变态孕交粗暴| 国产精品无码无需播放器| 无码熟妇人妻AV影音先锋| 国内精品久久人妻无码不卡| 成人欧美一区二区三区的电影| 色偷偷www.8888在线观看| 邻居少妇张开腿让我爽了一夜| 久久精品国产蜜臀av| 女人被黑人躁得好爽视频| 宾馆人妻4P互换视频| 少妇高清精品毛片在线视频| 亚洲色大成永久WW网站| 国产av无码专区亚洲av软件| 久久精品国产亚洲AV麻豆长发| 少妇人妻偷人偷人精品| 天天躁日日躁狠狠躁欧美老妇| 国产久免费热视频在线观看| 久久久久久综合网天天| 99久久久国产精品消防器材| 麻豆国产传媒精品视频| 精品国产成人A区在线观看| 一本一本久久A久久精品综合不卡| 18禁裸体动漫美女无遮挡网站| 午夜大片爽爽爽免费影院| 国产精品中文字幕日韩| 无码国产精品一区二区免费式影视 | 欧美极品色午夜在线视频| 亚洲国产成人精品无码区蜜柚| 强开少妇嫩苞又嫩又紧九色| 亚洲欧美综合中文| 久久精品国产亚洲av麻豆软件| 久久99精品国产99久久6尤物| 丰满少妇人妻HD高清大乳|